JAMB Syllabus For Physics 2024/2025 [Jamb Physics Topics]

JAMB Syllabus For Physics

JAMB Syllabus For Physics 2024/2025 – Joint Admission And Matriculation Board (JAMB) has officially released the JAMB Syllabus For Physics 2024/2025 which is available here in this blog for all the candidates who wish to enroll in the upcoming JAMB UTME Examination.

The JAMB Syllabus For Physics is a Document that contains the Topics that all Candidates who are science students and are going to write physics must study for the JAMB 2024/2025 examination.

Contents

JAMB Syllabus For Physics 2024/2025

What Is The JAMB Syllabus For Physics And Why Do You Need It?

The JAMB Syllabus For Physics is more like a guide or area of concentration that you should focus on when you’re reading in preparation against JAMB 2024.

It is a must for you to use this JAMB Syllabus For Physics because it’s the only secret that can guarantee you a high score in JAMB Physics.

Moreover, the JAMB Syllabus For Physics contains topics and their objectives and those objectives are what you need to foster your high JAMB score.

JAMB Syllabus For Physics 2024/2025

Below are the list of the JAMB Syllabus For Physics For 2024 with topics and their objectives altogether.

Capacitors

Objectives

Candidates should be able to:

  • i. determine uses of capacitors.
  • ii. analyse parallel plate capacitors.
  • iii. determine the capacitance of a capacitor.
  • iv. analyse the factors that affect the capacitance of a capacitor.
  • v. solve problems involving the arrangement of capacitors.
  • vi. determine the energy stored in capacitors.

Content

(a) Types and functions of capacitors.

  • (b) Parallel plate capacitors.
  • (c) Capacitance of a capacitor.
  • (d) The relationship between capacitance, area separation of plates and medium between the plates. C = EAd
  • (e) Capacitors in series and parallel.
  • (f) Energy stored in a capacitor.

Change of State

Objectives

Candidates should be able to:

  • i. differentiate between latent heat and specific latent heat of fusion and vaporization.
  • ii. differentiate between melting, evaporation and boiling.
  • iii. examine the effects of pressure and of dissolved substances on boiling and melting points.
  • iv. solve numerical problems.

Content

  • (a) Latent heat.
  • (b) Specific latent heats of fusion and vaporization.
  • (c) Melting, evaporation and boiling.
  • (d) The influence of pressure and of dissolved substances on boiling and melting points.
  • (e) Application in appliances.

Characteristics of Sound Waves

Objectives

Candidates should be able to:

  • i. differentiate between noise and musical notes.
  • ii. analyse quality, pitch, intensity and loudness of sound notes.
  • iii. evaluate the application of (ii) above in the construction of musical instruments.
  • iv. identify overtones by vibrating strings and air columns.
  • v. itemize acoustical examples of resonance.
  • vi. determine the frequencies of notes emitted by air columns in open and closed pipes in relation to their lengths.

Content

  • (a) Noise and musical notes.
  • (b) Quality, pitch, intensity and loudness and their application to musical instruments.
  • (c) Simple treatment of overtones produced by vibrating strings and their columns
    Fo = 12L√(Tμ)
    where μ = ml
  • (d) Acoustic examples of resonance.
  • (e) Frequency of a note emitted by air columns in closed and open pipes in relation to their lengths.

Conduction of Electricity

  • Conduction of Electricity Through Gases

Objectives

Candidates should be able to:

  • i. analyse discharge through gases.
  • ii. determine some applications/uses of conduction of electricity through gases.

Content

  • (a) Discharge through gases (qualitative treatment only).
  • (b) Application of conduction of electricity through gases.
  • Conduction of Electricity Through Liquids

Objectives

Candidates should be able to:

  • i. distinguish between electrolytes and non-electrolytes.
  • ii. analyse the processes of electrolysis.
  • iii. apply FaradayÂ’s laws of electrolysis to solve problems.

Content

  • (a) Electrolytes and non-electrolyte.
  • (b) Concept of electrolysis.
  • (c) FaradayÂ’s law of electrolysis.
  • (d) Application of electrolysis, e.g. electroplating, calibration of ammeter, etc.

Current Electricity

Objectives

Candidates should be able to:

  • i. differentiate between emf, p.d., current and internal resistance of a cell.
  • ii. apply OhmÂ’s law to solve problems.
  • iii. use metre bridge to calculate resistance.
  • iv. compute effective total resistance of both parallel and series arrangement of resistors.
  • v. determine the resistivity and the conductivity of a conductor.
  • vi. measure emf, current and internal resistance of a cell using the potentiometer.
  • vii. identify the advantages of the potentiometer.
  • viii. apply Kirchoff’s law in electrical networks.

Content

  • (a) Electromagnetic force (emf), potential difference (p.d.), current, internal resistance of a cell and lost Volt.
  • (b) OhmÂ’s law.
  • (c) Measurement of resistance.
  • (d) Meter bridge.
  • (e) Resistance in series and in parallel and their combination.
  • (f) The potentiometer method of measuring emf, current and internal resistance of a cell.
  • (g) Electrical networks.

Dams and Energy Production

Content

  • (a) Location of dams.
  • (b) Energy production.

Dispersion of Light and Colours

Objectives

Candidates should be able to:

  • i. identify primary colours and obtain secondary colours by mixing.
  • ii. understand the formation of rainbow.

Content

  • (a) Dispersion of white light by a triangular prism.
  • (b) Production of pure spectrum.
  • (c) Colour mixing by addition and subtraction.
  • (d) Colour of objects and colour filters.
  • (e) Rainbow.

Eddy Current

Objectives

Candidates should be able to:

  • i. describe the method by which eddy current losses can be reduced.
  • ii. determine ways by which eddy currents can be used.

Content

  • (a) Reduction of eddy current.
  • (b) Applications of eddy current.

Elasticity

Objectives

Candidates should be able to:

  • i. interpret force-extension curves.
  • ii. interpret HookeÂ’s law and YoungÂ’s modulus of a material.
  • iii. use spring balance to measure force.
  • iv. determine the work done in spring and elastic strings.

Content

  • (a) Elastic limit, yield point, breaking point, HookeÂ’s law and YoungÂ’s modulus.
  • (b) The spring balance as a device for measuring force.
  • (c) Work done per unit volume in springs and elastic strings.

Electric Cells

Objectives

Candidates should be able to:

  • i. identify the defects of the simple voltaic cell and their correction.
  • ii. compare different types of cells including solar cell.
  • iii. compare the advantages of lead-acid and Nikel iron accumulator.
  • iv. solve problems involving series and parallel combination of cells.

Content

  • (a) Simple voltaic cell and its defects.
  • (b) Daniel cell, Leclanché cell (wet and dry).
  • (c) Lead –acid accumulator and Nickel-Iron (Nife) Lithium lron and Mercury cadmium.
  • (d) Maintenance of cells and batteries (detail treatment of the chemistry of a cell is not required)
  • (e) Arrangement of cells.
  • (f) Efficiency of a cell.

Electrical Energy and Power

Objectives

Candidates should be able to:

  • i. apply the expressions of electrical energy and power to solve problems.
  • ii. analyse how power is transmitted from the power station to the consumer.
  • iii. identify the heating effects of current and its uses.
  • iv. identify the advantages of parallel arrangement over series.
  • v. determine the fuse rating.

Content

  • (a) Concepts of electrical energy and power.
  • (b) Commercial unit of electric energy and power.
  • (c) Electric power transmission.
  • (d) Heating effects of electric current.
  • (e) Electrical wiring of houses.
  • (f) Use of fuses.

Electromagnetic Induction

Objectives

Candidates should be able to:

  • i. interpret the laws of electromagnetic induction.
  • ii. identify factors affecting induced emf.
  • iii. recognize how LenzÂ’s law illustrates the principle of conservation of energy.
  • iv. interpret the diagrammatic set up of A.C. generators.
  • v. identify the types of transformer.
  • vi. examine principles of operation of transformers.
  • vii. assess the functions of an induction coil.
  • viii. draw some conclusions from the principles of operation of an induction coil.

Content

  • (a) FaradayÂ’s laws of electromagnetic induction.
  • (b) Factors affecting induced emf.
  • (c) LenzÂ’s law as an illustration of the principle of conservation of energy.
  • (d) A.C. and D.C. generators
  • (e) Transformers.
  • (f) The induction coil.

Electromagnetic Spectrum

Objectives

Candidates should be able to:

  • i. deduces why objects have colours.
  • ii. relate the expression for gravitational forces between two bodies.
  • iii. apply Newton’s law of universal gravitation.
  • iv. analyse colours using colour filters.
  • v. analyse the electromagnetic spectrum in relation to their wavelengths, sources, detection and uses.

Content

  • Description of sources and uses of various types of radiation.

Electrostatics

Objectives

Candidates should be able to:

  • i. identify charges.
  • ii. examine uses of an electroscope.
  • iii. apply CoulombÂ’s square law of electrostatic to solve problems.
  • iv. deduce expressions for electric field intensity and potential difference.
  • v. identify electric field flux patterns of isolated and interacting charges.
  • vi. analyse the distribution of charges on a conductor and how it is used in lightening conductors.

Content

  • (a) Existence of positive and negative charges in matter.
  • (b) Charging a body by friction, contact and induction.
  • (c) Electroscope.
  • (d) CoulombÂ’s inverse square law electric field and potential.
  • (e) Electric field intensity and potential difference.
  • (f) Electric discharge and lightning.

Elementary Modern Physics

Objectives

Candidates should be able to:

  • i. identify the models of the atom and write their limitations.
  • ii. describe elementary structure of the atom.
  • iii. differentiate between the energy levels and spectra of atoms.
  • iv. compare thermionic emission and photoelectric emission.
  • v. apply Einstein’s equation to solve problems of photoelectric effect.
  • vi. calculate the stopping potential.
  • vii. relate some application of thermionic emission and photoelectric effects.
  • viii. interpret the process involved in the productin of x-rays.
  • ix. identify some properties and applications of x-rays.
  • x. analyse elementary radioactivity.
  • xi. distinguish between stable and unstable nuclei.
  • xii. identify isotopes of an element.
  • xiii. compare the properties of alpha, beta and gamma rays.
  • xiv. relate half-life and decay constant of a radioactive element.
  • xv. determine the binding energy, mass defect and Einstein’s energy equation.
  • xvi. analyse wave particle duality.xvii. solve some numerical problems based on the uncertainty principle and wave-particle duality.

Content

  • (a) Models of the atom and their limitations.
  • (b) Elementary structure of the atom.
  • (c) Energy levels and spectra.
  • (d) Thermionic and photoelectric emissions.
  • (e) EinsteinÂ’s equation and stopping potential.
  • (f) Applications of thermionic emissions and photoelectric effects.
  • (g) Simple method of production of x-rays.
  • (h) Properties and applications of alpha, beta and gamma rays.
  • (i) Half-life and decay constant.
  • (j) Simple ideas of production of energy by fusion and fission.
  • (k) Binding energy, mass defect and Einstein’s energy equation ΔE = Δmc2
  • (l) Wave-particle paradox (duality of matter)
  • (m) Electron diffraction.
  • (n) The uncertainty principle.

Energy and Society

Objectives

Candidates should be able to:

  • i. itemize the sources of energy.
  • ii. distinguish between renewable and non-renewable energy, examples should be given.
  • iii. identify methods of energy transition.
  • iv. explain the importance of energy in the development of the society.
  • v. analyze the effect of energy use to the environment.
  • vi. identify the impact of energy on the environment.
  • vii. identify energy sources that are friendly or hazardous to the environment.
  • viii. identify energy uses in their immediate environment.
  • ix. suggests ways of safe energy use.
  • x. state different forms of energy conversion.

Content

  • (a) Sources of energy.
  • (b) Renewable and non-renewable energy e.g. coal, crude oil etc.
  • (c) Uses of energy.
  • (d) Energy and development.
  • (e) Energy diversification.
  • (f) Environmental impact of energy e.g. global warming, green house effect and spillage.
  • (g) Energy crises.
  • (h) Conversion of energy.
  • (i) Devices used in energy production.

Equilibrium of Forces

  • Centre of Gravity and Stability
  • Conditions for Equilibrium of Rigid Bodies Under the Action of Parallel and Non-Parallel Forces
  • Equilibrium of Particles
  • Principles of Moments

Force On a Current-Carrying Conductor in A Magnetic Field

Objectives

Candidates should be able to:

  • i. determine the direction of force on a current carrying conductor using FlemingÂ’s left-hand rule.
  • ii. interpret the attractive and repulsive forces between two parallel current-carrying conductors using diagrams.
  • iii. determine the relationship between the force, magnetic field strength, velocity and the angle through which the charge enters the field.
  • iv. interpret the working of the d.c. motor.
  • v. analyse the principle of electromagnets and give examples of its application.
  • vi. compare moving iron and movng coil instruments.
  • vii. convert a galvanometer into an ammeter or a voltmeter.
  • viii. identify the factors affecting the sensitivity of a galvanometer.

Content

  • (a) Quantitative treatment of force between two parallel current-carrying conductors.
  • (b) Force on a charge moving in a magnetic field.
  • (c) The d. c. motor.
  • (d) Electromagnets.
  • (e) Carbon microphone.
  • (f) Moving coil and moving iron instruments.
  • (g) Conversion of galvanometers to ammeters and voltmeter using shunts and multipliers.
  • (h) Sensitivity of a galvanometer.

Friction

Objectives

Candidates should be able to:

  • i. differentiate between static and dynamic friction.
  • ii. determine the coefficient of limiting friction.
  • iii. compare the advantages and disadvantages of friction.
  • iv. suggest ways by which friction can be reduced.
  • v. analyse factors that affect viscosity and terminal velocity.
  • vi. apply Stoke’s law.

Content

  • (a) Static and dynamic friction.
  • (b) Coefficient of limiting friction and its determination.
  • (c) Advantages and disadvantages of friction.
  • (d) Reduction of friction.
  • (e) Qualitative treatment of viscosity and terminal viscosity.
  • (f) Stoke’s law.

Gas Laws

Objectives

Candidates should be able to:

  • i. interpret the gas laws.
  • ii. use expression of these laws to solve numerical problems.
  • iii. interpret Van der Waals equation for one mole of a real gas.

Content

  • (a) BoyleÂ’s law (isothermal process).
  • (b) CharleÂ’s law (isobaric process).
  • (c) Pressure law (volumetric process).
  • (d) Absolute zero of temperature.
  • (e) General gas equation (PVT = constant)
  • (f) ideal gas equation: e.g. PV = nRT
  • (g) Van der Waals gas

Gravitational Field

Objectives

Candidates should be able to:

  • i. identify the expression for gravitational force between two bodies.
  • ii. apply NewtonÂ’s law of universal gravitation.
  • iii. give examples of conservative and non-conservative fields.
  • iv. deduce the expression for gravitational field potentials.
  • v. identify the causes of variation of g on the earth’s surface.
  • vi. differentiate between mass and weight.
  • vii. determine escape velocity.

Content

  • (a) NewtonÂ’s law of universal gravitation.
  • (b) Gravitational potential.
  • (c) Conservative and non-conservative fields.
  • (d) Acceleration due to gravity.
  • (e) Variation of g on the earthÂ’s surface.
  • (f) Distinction between mass and weight.
  • (g) Escape velocity.
  • (h) Parking orbit and weightlessness.

Heat Transfer

Objectives

Candidates should be able to:

  • i. differentiate between conduction, convention and radiation as modes of heat transfer.
  • ii. solve problems on temperature gradient, thermal conductivity and heat flux.
  • iii. assess the effect of the nature of the surface on the energy radiated and absorbed by it.
  • iv. compare the conductivities of common materials.
  • v. relate the component part of the working of the thermos flask.
  • vi. differentiate between land and sea breeze.
  • vii. analyse the principles of operating internal combustion jet engines, and rockets.

Content

  • (a) Conduction, convention and radiation as modes of heat transfer.
  • (b) Temperature gradient, thermal conductivity and heat flux.
  • (c) Effect of the nature of the surface on the energy radiated and absorbed by it.
  • (d) The conductivities of common materials.
  • (e) The thermos flask.
  • (f) Land and sea breeze.
  • (g) Engines.

Inductance

Objectives

Candidates should be able to:

  • i. interpret the inductance of an inductor.
  • ii. recognize units of inductance.
  • iii. calculate the effective total inductance in series and parallel arrangement.
  • iv. deduce the expression for the energy stored in an inductor.
  • v. examine the applications of inductors.

Content

  • (a) Explanation of inductance.
  • (b) Unit of inductance.
  • (c) Energy stored in an inductor. E = 12 × I2 × L
  • (d) Applications/uses of inductors.

Introductory to Electronics

Objectives

Candidates should be able to:

  • i. differentiate between conductors, semi-conductors and insulators.
  • ii. distinguish between intrinsic and extrinsic semiconductors.
  • iii. distinguish between electron and hole carriers.
  • iv. distinguish between n-type and p-type semiconductor.
  • v. analyse diodes and transistor.
  • vi. relate diodes to rectification and transistor to amplification.

Content

  • (a) Distinction between metals, semiconductors and insulators (elementary knowledge of band gap is required).
  • (b) Intrinsic and extrinsic semi-conductors.
  • (c) Uses of semiconductors and diodes in rectification and transistors in amplification.
  • (d) n-type and p-type semiconductors.
  • (e) Elementary knowledge of diodes and transistors.

Light Energy

  • Propagation of Light
  • Source of Light

Liquids at Rest

Objectives

Candidates should be able to:

  • i. distinguish between density and relative density of substances.
  • ii. determine the upthrust on a body immersed in a liquid.

iii. apply ArchimedesÂ’ principle and law of floatation to solve problems.

Content

  • (a) Determination of density of solid and liquids.
  • (b) Definition of relative density.
  • (c) Upthrust on a body immersed in a liquid.
  • (d) ArchimedeÂ’s principle and law of floatation and applications, e.g. ships and hydrometers.

Magnets and Magnetic Fields

Objectives

Candidates should be able to:

  • i. give examples of natural and artificial magnets.
  • ii. differentiate between the magnetic properties of soft iron and steel.
  • iii. identify the various methods of making magnets and demagnetizing magnets.
  • iv. describe how to keep a magnet from losing its magnetism.
  • v. determine the flux pattern exhibited when two magnets are placed together pole to pole.
  • vi. determine the flux of a current carrying conductor, circular wire and solenoid including the polarity of the soelnoid.
  • vii. determine the flux pattern of a magnet placed in the earth’s magnetic fields.
  • viii. identify the magnetic elements of the earth’s flux.
  • ix. determine the variation of earth’s magnetic field on the earth’s surface.
  • x. examine the applications of the earth’s magnetic field.

Content

  • (a) Natural and artificial magnets.
  • (b) Magnetic properties of soft iron and steel.
  • (c) Methods of making magnets and demagnetization.
  • (d) Concept of magnetic field.
  • (e) Magnetic field of a permanent magnet.
  • (f) Magnetic field round a straight current carrying conductor, circular wire and solenoid.
  • (g) Properties of the earth’s magnetic field; north and south poles, magnetic meridian and angle of dip and declination.
  • (h) Flux and flux density.
  • (i) Variation of magnetic field intensity over the earth’s surface.
  • (j) Applications: earth’s magnetic field in navigation and mineral exploration.

Measurements and Units

  • Derived Physical Quantities and Their Units
  • Dimensions
  • Fundamental Physical Quantities
  • Length, Area and Volume
  • Limitations of Experimental Measurements
  • Mass
  • Measurement, Position, Distance and Displacement
  • Time

Motion

  • Linear Motion
  • Motion
  • Motion in A Circle
  • Newton’s Laws of Motion
  • Projectiles
  • Simple Harmonic Motion (S.H.M.)

Nuclear Energy

  • Nuclear Energy

Optical Instruments

Objectives

Candidates should be able to:

  • i. apply the principles of operation of optical instruments to solve problems.
  • ii. distinguish between the human eye and the cameras.
  • iii. calculate the power of a lens.
  • iv. evaluate the angular magnification of optical instruments.
  • v. determine the near and far points.
  • vi. detect sight defects and their corrections.

Content

  • (a) The principles of microscopes, telescopes, projectors, cameras and the human eye (physiological details of the eye are not required).
  • (b) Power of a lens.
  • (c) Angular magnification.
  • (d) Near and far points.
  • (e) Sight defects and their corrections.

Pressure

  • Atmospheric Pressure
  • Pressure in Liquids

Propagation of Sound Waves

Objectives

Candidates should be able to:

  • i. determine the need for a material medium in the propagation of sound waves.
  • ii. compare the speed of sound in solids, liquids and air.
  • iii. relate the effects of temperature and pressure to the speed of sound in air.
  • iv. solve problem on echoes, reverberation and speed.
  • v. compare the disadvantages and advantages of echoes.
  • vi. solve problems on echo, reverberation and speed of sound.

Content

  • (a) The necessity for a material medium.
  • (b) Speed of sound in solids, liquids and air.
  • (c) Reflection of sound; echoes, reverberation and their applications.
  • (d) Disadvantages of echoes and reverberations.

Quantity of Heat

Objectives

Candidates should be able to:

  • i. differentiate between heat capacity and specific heat capacity.
  • ii. determine heat capacity and specific heat capacity using simple methods.
  • iii. solve numerical problems.

Content

  • (a) Heat as a form of energy.
  • (b) Definition of heat capacity and specific heat capacity of solids and liquids.
  • (c) Determination of heat capacity and specific heat capacity of substances by simple methods e.g. method of mixtures and electrical method and Newton’s law of cooling.

Reflection of Light at Plane and Curved Surfaces

Objectives

Candidates should be able to:

  • i. interpret the laws of reflection.
  • ii. illustrate the formation of images by plane, concave and convex mirrors.
  • iii. apply the mirror formula to solve optical problems.
  • iv. determine the linear magnification.
  • v. apply the laws of reflection of light to the working of periscope, kaleidoscope and the sextant.

Content

(a) Laws of reflection.

(b) Application of reflection of light.

(c) Formation of images by plane, concave and convex mirrors and ray diagrams.

(d) Use of the mirror formula
1f = 1u + 1v

(e) Linear magnification.

Refraction of Light Through

Objectives

Candidates should be able to:

  • i. use of lens formula and ray diagrams to solve optical numerical problems.
  • ii. determine the magnification of an image.
  • iii. calculate the refractive index of a glass prism using minimum deviation formula.

Content

(a) Use of the minimum deviation formula:
U = sinA + D⁄2sinA⁄2.
(b) Type of lenses.
(c) Use of lens formula:
1f = 1u + 1v and Newton’s formular (F2 = ab).
(d) Magnification.

Refraction of Light Through a Plane and Curved Surfaces

Objectives

Candidates should be able to:

  • i. interpret the laws of reflection.
  • ii. determine the refractive index of glass and liquid using SnellÂ’s law.
  • iii. determine the refractive index using the principle of real and apparent depth.
  • iv. determine the conditions necessary for total internal reflection.
  • v. examine the use of periscope, prism, binoculars, optical fibre.
  • vi. apply the principles of total internal reflection to the formation of mirage.

Content

  • (a) Explanation of refraction in terms of velocity of light in the media.
  • (b) Laws of refraction.
  • (c) Definition of refractive index of a medium.
  • (d) Determination of refractive index of glass and liquid using SnellÂ’s law.
  • (e) Real and apparent depth and lateral displacement.
  • (f) Critical angle and total internal reflection.

Scalars and Vectors

Objectives

Candidates should be able to:

  • i. identify different types of simple machines.
  • ii. solve problems involving simple machines.

Content

  • (a) Definition of simple machines.
  • (b) Types of machines.
  • (c) Mechanical advantage, velocity ratio and efficiency of machines.

Simple A.C. Circuits

Objectives

Candidates should be able to:

  • i. identify a.c. current and d.c. voltage.
  • ii. differentiate between the peak and r.m.s. values of a.c.
  • iii. determine the phase difference between current and voltage.
  • iv. interpret series R-L-C circuits.
  • v. analyse vector diagrams.
  • vi. calculate the effective voltage, reactance and impedance.
  • vii. recognise the condition by which the circuit is at resonance.
  • viii. determine the resonant frequency of R-L-C arrangement.
  • ix. determine the instantaneous power, average power and the power factor in a.c. circuits.

Content

  • (a) Explanation of a.c. current and voltage.
  • (b) Peak and r.m.s. values.
  • (c) A.C. source connected to a resistor.
  • (d) A.C. source connected to a capacitor- capacitive reactance.
  • (e) A.C. source connected to an inductor-inductive reactance.
  • (f) Series R-L-C circuits.
  • (g) Vector diagram, phase angle and power factor.
  • (h) Resistance and impedance.
  • (i) Effective voltage in an R-L-C circuits.
  • (j) Resonance and resonance frequency

Fo = 12πLC

Simple Machines

Objectives

Candidates should be able to:

  • i. identify different types of simple machines.
  • ii. solve problems involving simple machines.

Content

  • (a) Definition of simple machines.
  • (b) Types of machines.
  • (c) Mechanical advantage, velocity ratio and efficiency of machines.

Solar Energy

Content

  • (a) Solar collector.
  • (b) Solar panel for energy supply.

Structure of Matter and Kinetic Theory

  • Kinetic Theory
  • Molecular Nature of Matter

Temperature and Its Measurement

Objectives

Candidates should be able to:

  • i. identify thermometric properties of materials that are used for different thermometers.
  • ii. calibrate thermometers.
  • iii. differentiate between temperature scales e.g. Celsius and Kelvin.
  • iv. compare the types of thermometers.
  • v. convert from one scale of temperature to another.

Content

  • (a) Concept of temperature.
  • (b) Thermometric properties.
  • (c) Calibration of thermometers.
  • (d) Temperature scales–Celsius and Kelvin.
  • (e) Types of thermometers.
  • (f) Conversion from one scale of temperature to another.

Thermal Expansion

  • Liquids
  • Solids

Vapours

Objectives

Candidates should be able to:

  • i. distinguish between saturated and unsaturated vapours.
  • ii. relate saturated vapour pressure to boiling point.
  • iii. determine S.V.P by barometer tube method.
  • iv. differentiate between dew point, humidity and relative humidity.
  • v. estimate the humidity of the atmosphere using wet and dry bulb hygrometers.
  • vi. solve numerical problems.

Content

  • (a) Unsaturated and saturated vapours.
  • (b) Relationship between saturated vapour pressure (S.V.P) and boiling.
  • (c) Determination of S.V.P by barometer tube method.
  • (d) Formation of dew, mist, fog, and rain.
  • (e) Study of dew point, humidity and relatve humidity.
  • (f) Hygrometry; estimation of the humidity of the atmosphere using wet and dry bulb hygrometers.

Waves

  • Characteristics/Properties
  • Classification
  • Production and Propagation

Work, Energy and Power

Objectives

Candidates should be able to:

  • i. differentiate between work, energy and power.
  • ii. compare different forms of energy, giving examples.
  • iii. apply the principle of conservation of energy.
  • iv. examine the transformation between different forms of energy.
  • v. interpret the area under the force-distance curve.
  • vi. solve numerical problems in work, energy and power.

Content

  • (a) Definition of work, energy and power.
  • (b) Forms of energy.
  • (c) Conservation of energy.
  • (d) Qualitative treatment between different forms of energy.
  • (e) Interpretation of area under the force-distance curve.

How To Use The JAMB Syllabus For Physics 2024

Use the above topics and follow them serially to read for your JAMB examination. It’s that simple.

Below is a list containing all the textbooks recommended for JAMB 2024 Physics:

  • Ike, E. E (2014) Essential Principles of Physics, Jos ENIC Publishers.
  • Ike, E. E (2014) Numerical Problems and Solutions in Physics, Jos, ENIC Publishers.
  • Nelson, M (1977) Fundamentals of Physics, Great Britain: Hart Davis Education.
  • Nelson, M and Parker Â… (1989) Advanced Level Physics (Sixth Edition), Heinemann.
  • Okeke, P. N and Anyakoha, M. W (2000) Senior Secondary School Physics, Lagos, Pacific Printers.
  • Olumuyionwa A. and Ogunkoya O. O (1992) Comprehensive Certificate Physics, Ibadan: University Press Plc.

People Also Ask

  • Which Physics textbook is best for JAMB?
  • What should I study for Physics JAMB?

READ ALSOKey Points In Physics For JAMB 2024/2025

I hope you’ve seen the JAMB Syllabus For Physics for 2024/2025, Kindly use the comments section below to ask me any question you have about JAMB Syllabus For Physics or any other subject.

Help us to share this article using the social Media buttons below. Thank you

About Scholarsnaija NG 599 Articles
Hi visitor! This post is authored by the Editorial Team of Scholars Naija NG, we are here to lead you to your destination by providing you with legit and most up-to-date academic information.
Subscribe
Notify of
guest
0 Comments
Newest
Oldest
Inline Feedbacks
View all comments